
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 1

Secured Consistent Transactions

Rakesh A
1
,

Saravanan K

2
,

Hari Prasath L

3

 1, 2Student, Department of Information Technology, Anand Institute of Higher Technology, Chennai

3
Assistant Professor, Department of Information Technology, Anand Institute of Higher Technology, Chennai

Abstract

In distributed transactional database systems deployed over

cloud servers, entities cooperate to form proofs of

authorizations that are justified by collections of certified

credentials. These proofs and credentials may be evaluated

and collected over extended time periods under the risk of

having the underlying authorization policies or the user

credentials being in inconsistent states. It therefore becomes

possible for policy-based authorization systems to make

unsafe decisions that might threaten sensitive resources. In

this paper, we highlight the criticality of the problem. We then

define the notion of trusted transactions when dealing with

proofs of authorizations. Accordingly, we propose several

increasingly-stringent levels of policy consistency constraints,

and present different enforcement approaches to guarantee the

trustworthiness of transactions executing on cloud servers.

We propose a Two-Phase Validation Commit protocol as a

solution, which is a modified version of the basic Two-Phase

Commit protocols. We finally analyze the different presented

approaches using both analytical evaluation of the overheads

and simulations to guide the decision makers to which

approach to use.

Index Terms—Cloud databases, authorization policies,

consistency, distributed transactions, atomic commit protocol

1. Introduction

Research in cloud computing is receiving distributed

process of transacting database systems deployed over

cloud servers, entities work to form proofs of

authorizations that are justified by collections of

certified evidence of authority. These proofs and status

may be evaluated and collected over extended time

periods under the risk of having the underlying

authorization policies or the user confidence being in

lacking agreement states. In this paper, we highlight the

criticality of the problem. We then define the general

understanding of trusted transactions when dealing with

proofs of authorizations. In cloud computing, users can

outsource their computation and storage to servers (also

called clouds) using Internet. Clouds can provide

several types of services like applications (e.g.,

Google Apps, Microsoft online,). Much of the data

stored in clouds is highly sensitive, Security and

privacy are thus very important issues in cloud

computing.

In one hand, the user should authenticate itself before

initiating any transaction, and on the other hand, it must

be ensured that the cloud does not tamper with the data

that is outsourced. User privacy is also required so that

the cloud or other users do not know the identity of the

user. The cloud can hold the user accountable for the

data it outsources, and likewise, the cloud is itself

accountable for the services it provides. Existing work

on access control in cloud are authorization in nature.

we must also handle two types of security remark

conditions. First, the system may suffer from policy

inconsistencies during policy updates due to the

informal agreement model fundamental most cloud

services. For example, it is possible for several versions

of the policy to be observed at multiple position within

a single transaction, leading to inconsistent (and likely

unsafe)access decisions during the transaction. Second,

it is possible for external factors to cause user credential

inconsistencies (evidence of authority) over the lifetime

of a transaction. For instance, a user’s login evidence of

authority could be invalidated or to bring after

collection by the authorization server, but before the act

of completing of the transaction.

We propose several increasingly strict levels of policy

agreement restriction, and present different the act

approaches to guarantee the confidence of transactions

executing on cloud servers. In the proposed scheme,

the cloud verifies the authenticity of the server without

knowing the user’s identity. We propose a Two-Phase

Validation Commit protocol as a solution, which is a

modified version of the basic Two-Phase Commit

protocols. We finally analyze the different presented

approaches using both analytical Evaluation of the

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 2

overheads and enactment to guide the decision makers

to which approach to use. We then present a more

general term, unauthorization person not able to access

policy and credential consistency, our scheme is a safe

transaction, that identifies transactions that are both

trusted and conform to the ACID properties of

distributed database systems.

I.a User Enrollment

Users have an initial level Registration Process at the

web end. The users provide their own personal

information for this process. The server in turn stores

the information in its database.

I.b Transaction Manager

TM first sends a Prepare to-Validate message to each

participant server. In response to this message, each

participant evaluates the proofs for each query of the

transaction using the latest policies it has available and

sends a reply back to the TM containing the truth value

(True/False) of those proofs along with the version

number and policy identifier for each policy used. Once

the TM receives the replies from all the participants, it

moves on to the validation phase. TM sends out a

Prepare-to-Commit message for a transaction, The yes

or no reply for the satisfaction of integrity constraints as

in 2PC, the true or false reply for the satisfaction of the

proofs of authorizations as in 2PV, and the version

number of the policies used to build the proofs as in

2PV. It is similar to that of 2PV with the exception of

handling the yes or no reply for integrity constraint

validation and having a decision of commit rather than

continue. The TM enforces the same behavior as 2PV

in identifying policies inconsistencies and sending the

Update messages.

I.c Unauthorized Person

If come unauthorized person change the version and

policy, the TM needs to check the version number it

receives from each server with that of the very first

participating server. If they are different, the transaction

aborts due to a consistency violation. At commit time,

all the proofs will have been generated with consistent

policies and only 2PC is invoked. TM needs to validate

the policy versions used against the latest policy version

known by the master policies server to decide whether

to abort or not. At commit time, 2PVC is invoked by

the TM to check the data integrity constraints and

verify that master policies server has not received any

newer policy versions. Continuous proofs invoke 2PV

at the execution of each query which will update the

older policies with the new policy and re-evaluate.

2. System Assumptions and Problem

Definition

A. System Model

We assume a cloud infrastructure consisting of a set of

S servers, where each server is responsible for hosting a

subset D of all data items D belonging to a specific

application domain (D ⊂ D). Users interact with the

system by submitting queries or update requests

encapsulated in ACID transactions.

A transaction is submitted to a Transaction Manager

(TM) that coordinates its execution. Multiple TMs

could be invoked as the system workload increases for

load balancing, but each transaction is handled by only

one TM. We denote each transaction as T = q1, q2, . . . ,

qn, where qi є Q is a single query/update belonging to

the set of all queries Q. The start time of each

transaction is denoted by α(T), and the time at which

the transaction finishes execution and is ready to

commit is denoted by ω(T). We assume that queries

belonging to a transaction execute sequentially, and that

a transaction does not fork sub-transactions. These

assumptions simplify our presentation, but do not affect

the correctness or the validity of our consistency

definitions. Let P denote the set of all authorization

policies, and let Psi (D) denote the policy that server si

uses to protect data item D. We represent a policy P as

a mapping P : S × 2D → 2R ×A×N that associates a

server and a set of data items with

TM TM

DB

and

DB

and
DB

and

Verifiable

Trusted

Verifiable

Trusted

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 3

a set of inference rules from the set R, a policy

administrator from the set A, and a version number. We

denote by C the set of all credentials, which are issued

by the Certificate Authorities (CAs) within the system.

We assume that each CA offers an online method that

allows any server to check the current status of

credentials that it has issued. Given a credential ck є C,

α(ck) and ω(ck) denote issue and expiration times of ck,

respectively. Given a function m : Q → 2D that

identifies the data items accessed by a particular query,

a proof of authorization for query qi evaluated at server

s j at time tk is a tuple (qi, s j, Ps j (m(qi)), tk,C), where

C is the set of credentials presented by the querier to

satisfy Ps j (m(qi)). In this paper, we use the function

eval : F ×TS →B to denote whether a proof f є F is

valid at time t єTS.

B. Problem Definition

Since transactions are executed over time, the state

information of the credentials and the policies enforced

by different servers are subject to changes at any time

instance, therefore it becomes important to introduce

precise definitions for the different consistency levels

that could be achieved within a transactions lifetime.

These consistency models strengthen the trusted

transaction definition by defining the environment in

which policy versions are consistent relative to the rest

of the system. Before we do that, we define a

transaction’s view in terms of the different proofs of

authorizations evaluated during the lifetime of a

particular transaction.

Definition 1: (View) A transaction’s view VT is the set

of proofs of authorizations observed during the lifetime

of a transaction [α(T), ω(T)] and defined as VT = { fsi |

fsi = (qi, si, Psi (m(qi)), ti,C) ∧ qi ∈ T}. Following

from Def. 1, a transaction’s view is built incrementally

as more proofs of authorizations are being evaluated by

servers during the transaction execution. We now

present two increasingly more powerful definitions of

consistencies within transactions.

Definition 2: (View Consistency) A view VT = {(qi, si,

Psi (m(qi)), ti,C), . . . , (qn, sn, Psn (m(qn)), tn,C)} is

view consistent, or φ-consistent, if VT satisfies a

predicate φ-consistent that places constraints on the

versioning of the policies such that φ-consistent(VT)

↔ ∀i, j : ver(Psi) = ver(Ps j) for all policies belonging

to the same administrator A, where function ver is

defined as ver : P → N.

With a view consistency model, the policy versions

should be internally consistent across all servers

executing the transaction. The view consistency model

is weak in that the policy version agreed upon by the

subset of servers within the transaction may not be the

latest policy version v. It may be the case that a server

outside of the S servers has a policy that belongs to the

same administrative domain and with a version v > v. A

more strict consistency model is the global consistency

and is defined as follows.

Definition 3: (Global Consistency) A view VT = {(qi,

si, Psi (m(qi)), ti,C), . . . , (qn, sn, Psn (m(qn)), tn,C)} is

global consistent, or ψ-consistent, if VT satisfies a

predicate ψ-consistent that places constraints on the

versioning of the policies such that ψ-consistent(VT)

↔ ∀i : ver(Psi) = ver(P) for all policies belonging to

the same administrator A, and function ver follows the

same aforementioned definition, while ver(P) refers to

the latest policy version.

With a global consistency model, policies used to

evaluate the proofs of authorizations during a

transaction execution among S servers should match the

latest policy version among the entire policy set P,for

all policies enforced by the same administrator A.

Given the above definitions, we now have a precise

vocabulary for defining the conditions necessary for a

transaction to be asserted as “trusted”.

Definition 4: (Trusted Transaction) Given a transaction

T = {q1, q2, . . . , qn} and its corresponding view VT ,

T is trusted iff ∀fsi ∈VT : eval(fsi , t), at some time

instance t : α(T) ≤ t ≤ ω(T) ∧ (φ-consistent(VT) ∨ ψ-

consistent(VT)).

Finally, we say that a transaction is safe if it is a trusted

transaction that also satisfies all data integrity

constraints imposed by the database management

system. A safe transaction is allowed to commit, while

an unsafe transaction is forced to rollback.

3. Trusted Transaction Enforcement

A. Deferred Proofs of Authorization

Definition 5: Deferred proofs present an optimistic

approach with relatively weak authorization guarantees.

The proofs of authorizations are evaluated

simultaneously only at commit time (using either view

or global consistency from Defs. 2 and 3) to decide

whether the transaction is trusted.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 4

B. Punctual Proofs of Authorization

Definition 6: Punctual proofs present a more proactive

approach in which the proofs of authorizations are

evaluated instantaneously whenever a query is being

handled by a server. This facilitates early detections of

unsafe transactions which can save the system from

going into expensive undo operations. All the proofs of

authorizations are then re-evaluated at commit time to

ensure that policies were not updated during the

transaction in a way that would invalidate a previous

proof, and that credentials were not invalidated.

C. Incremental Punctual Proofs of Authorization

Before we define the Incremental Punctual proofs of

authorization approach, we define a view instance,

which is a view snapshot at a specific time instance.

4. Implementing Safe Transactions

A. Two-Phase Validation Algorithm

A common characteristic of most of our proposed

approaches to achieve trusted transactions is the need

for policy consistency validation at the end of a

transaction. That is, in order for a trusted transaction to

commit, its TM has to enforce either view or global

consistency among the servers participating in the

transaction. Toward this, we propose a new algorithm

called Two-Phase Validation (2PV).

Algorithm 1: Two-Phase Validation - 2PV(TM)
1. Send “Prepare-to-Validate” to all participants

2. Wait for all replies (a True/False, and a set of

policy versions for each unique policy)

3. Identify the largest version for all unique

policies

4. If all participants utilize the largest version for

each unique policy

5. If any responded False

6. ABORT

7. Otherwise

8. CONTINUE

9. Otherwise, for all participants with old

versions of policies

10. Send “Update” with the largest version

number of each Policy

11. Goto 2.

2PV operates in two phases: collection and validation.

During collection, the TM first sends a Prepare to-

Validate message to each participant server. In response

to this message, each participant (1) evaluates the

proofs for each query of the transaction using the latest

policies it has available and (2) sends a reply back to

the TM containing the truth value (TRUE/FALSE) of

those proofs along with the version number and policy

identifier for each policy used. Further, each participant

keeps track of its reply (i.e., the state of each query)

which includes the id of the TM (TMid), the id of the

transaction (Tid) to which the query belongs, and a set

of policy versions used in the query’s authorization (vi,

pi).

Once the TM receives the replies from all the

participants, it moves on to the validation phase. If all

polices are consistent, then the protocol honors the truth

value where any FALSE causes an ABORT decision

and all TRUE causes a CONTINUE decision. In the

case of inconsistent policies, the TM identifies the latest

policy and sends an Update message to each out-of-date

participant with a policy identifier and returns to the

collection phase. In this case, the participants (1) update

their policies, (2) re evaluate the proofs and (3) send a

new reply to the TM. Algorithm 1 shows the process

for the TM.

In the case of view consistency (Def. 2), there will be at

most two rounds of the collection phase. A participant

may only be asked to re-evaluate a query using a newer

policy by an Update message from the TM after one

collection phase.

For the global consistency case (Def. 3), the TM

retrieves the latest policy version from a master policies

server (Step 2) and use it to compare against the version

numbers of each participant (Step 3). This master

version may be retrieved only once or each time Step 3

is invoked. For the former case, collection may only be

executed twice as in the case of view consistency. In

the latter case, if the TM retrieves the latest version

every round, global consistency may execute the

collection many times. This is the case if the policy is

updated during the round. While the number of rounds

are theoretically infinite, in a practical setting, this

should occur infrequently.

B. Two-Phase Validate Commit Algorithm

The 2PV protocol enforces trusted transactions, but

does not enforce not safe transactions because it does

not validate any integrity constraints. Since the Two-

Phase Commit atomic protocol (2PC) commonly used

to enforce integrity constraints has similar structure as

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 5

2PV, we propose integrating these protocols into a

Two-Phase Validation Commit (2PVC) protocol.

Algorithm 2: Two-Phase Validation Commit -

2PVC (TM)
1. Send“Prepare-to-Commit” to all participants

2. Wait for all replies (Yes/No, True/False, and a

set of policy versions for each unique policy)

3. If any participant replied No for integrity

check

4. ABORT

5. Identify the largest version for all unique

policies

6. If all participants utilize the largest version for

each unique policy

7. If any responded False

8. ABORT

9. Otherwise

10. COMMIT

11. Otherwise, for participants with old policies

12. Send “Update” with the largest version

number of each policy

13. Wait for all replies

14. Goto 5.

2PVC can be used to ensure the data and policy

consistency requirements of safe transactions.

Specifically, 2PVC will evaluate the policies and

authorizations within the first, voting phase. That is,

when the TM sends out a Prepare-to-Commit message

for a transaction, the participant server has three values

to report: (1) the YES or NO reply for the satisfaction

of integrity constraints as in 2PC, (2) the TRUE or

FALSE reply for the satisfaction of the proofs of

authorizations as in 2PV, and (3) the version number of

the policies used to build the proofs (vi, pi) as in 2PV.

The process given in Algorithm 2 is for the TM under

view consistency. It is similar to that of 2PV with the

exception of handling the YES or NO reply for integrity

constraint validation and having a decision of

COMMIT rather than CONTINUE. The TM enforces

the same behavior as 2PV in identifying policies

inconsistencies and sending the Update messages. The

same changes to 2PV can be made here to provide

global consistency by consulting the master policies

server for the latest policy version (Step 5).

C. Using 2PV & 2PVC in Safe Transactions

2PV and 2PVC can be used to enforce each of the

consistency levels defined in Sec. 3. Deferred and

Punctual (Defs. 5 and 6) proofs are roughly the same.

The only difference is that Punctual will return proof

evaluations upon executing each query. Yet, this is

done on a single server, and therefore, does not need

2PVC or 2PV to distribute the decision. To provide for

trusted transactions, both require at commit time

evaluation at all participants using 2PVC.

 The TM needs to check the version number it

receives from each server with that of the very first

participating server. If they are different, the transaction

aborts due to a consistency violation. At commit time,

all the proofs will have been generated with consistent

policies and only 2PC is invoked. In the global

consistency case, the TM needs to validate the policy

versions used against the latest policy version known by

the master policies server to decide whether to abort or

not. At commit time, 2PVC is invoked by the TM to

check the data integrity constraints and verify that

master policies server has not received any newer

policy versions.

5. Evaluations

Environment and Setup

We used Java to implement each proof approach

described in Sec. 3 with support for both view and

global consistency. Although the approaches were

implemented in their entirety, the underlying database

and policy enforcement systems were simulated with

parameters. To understand the performance

implications of the different approaches, we varied the

(i) protocol used, (ii) level of consistency desired, (iii)

frequency of master policy updates, (iv) transaction

length, and (v) number of servers available.

Our experimentation framework consists of three main

components: a randomized transaction generator, a

master policy server that controls the propagation of

policy updates, and an array of transaction processing

servers. Our experiments were run within a research lab

consisting of 38 Apple Mac Mini computers. These

machines were running OS X 10.6.8 and had 1.83 GHz

Intel Core Duo processors coupled with 2GB of RAM.

All machines were connected to a gigabit ethernet LAN

with average round trip times of 0.35 ms. All WAN

experiments were also conducted within this testbed by

artificially delaying packet transmission by an

additional 75 ms.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 6

6. External Interface Requirements

A. Interfaces User

1. All the contents in the project are implemented JSP

and Servlets.

2. Every conceptual part of the projects is reflected

using Servlets Classes.

3. System gets the input and delivers through the GUI

based.

B. Hardware Interfaces

Ethernet

Ethernet on the AS/400 supports TCP/IP, Advanced

Peer-to-Peer Networking (APPN) and advanced

program-to-program communications (APPC).

ISDN

You can connect your AS/400 to an Integrated Services

Digital Network (ISDN) for faster, more accurate data

transmission. An ISDN is a public or private digital

communications network that can support data, fax,

image, and other services over the same physical

interface. Also, you can use other protocols on ISDN,

such as IDLC and X.25.

C. Software Interfaces

This software is interacted with the TCP/IP protocol,

Socket and listening on unused ports. Server Socket and

listening on unused ports and JDK 1.6

D. Communications Interfaces

1. TCP/IP protocol.

2. LAN Settings.

7. Other Nonfunctional Requirements

A. Performance Requirements

The performance of the wireless sensor network, to

execute this project on LAN or wifi communication

channel . So we need to one or more than machine to

execute the demo. Machine needs the enough hard disk

space to install the software and run our project.

B. Safety Requirement

1. The software may be safety-critical. If so, there are

issues associated with its integrity level.

2. The software may not be safety-critical although it

forms part of a safety-critical system. For example,

software may simply log transactions.

3. If a system must be of a high integrity level and if the

software is shown to be of that integrity level, then the

hardware must be at least of the same integrity level.

4. There is little point in producing 'perfect' code in

some language if hardware and system software (in

widest sense) are not reliable.

5. If a computer system is to run software of a high

integrity level then that system should not at the same

time accommodate software of a lower integrity level.

6. Systems with different requirements for safety levels

must be separated.

7. Otherwise, the highest level of integrity required

must be applied to all systems in the same environment.

C. Security Requirements

Do not block the some available ports through the

windows firewall.

D. Software Quality Attributes

1. Functionality are the required functions available,

including interoperability and security.

2.Reliability maturity, fault tolerance and

recoverability.

3.Usability how easy it is to understand, learn, and

operate the software system.

4.Efficiency performance and resource behavior.

5.Maintainability Maintaining the software.

6.Portability can the software easily be transferred to

another environment, including install ability.

8. Conclusions

Despite the popularity of cloud services and their wide

adoption by enterprises and governments, cloud

providers still lack services that guarantee both data and

access control policy consistency across multiple data

centers. Here we identified several consistency

problems that can arise during cloud-hosted transaction

processing using weak consistency models, particularly

if policy-based authorization systems are used to

enforce access controls. To this end, we developed a

variety of light-weight proof enforcement and

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 2, Issue 2, Apr-May, 2014

ISSN: 2320 – 8791 (Impact Factor: 1.479)

www.ijreat.org

www.ijreat.org
 Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org) 7

consistency models i.e., Deferred, Punctual,

Incremental, and Continuous proofs, with view or

global consistency that can enforce increasingly strong

protections with minimal runtime overheads.

We used simulated workloads to experimentally

evaluate implementations of our proposed consistency

models relative to three core metrics:transaction

processing performance, accuracy (i.e., global vs. view

consistency and recency of policies used), and precision

(level of agreement among transaction participants).

We found that high performance comes at a cost:

Deferred and Punctual proofs had minimal overheads,

but failed to detect certain types of consistency

problems. On the other hand, high accuracy models

(i.e., Incremental and Continuous) required higher code

complexity to implement correctly, and had only

moderate performance when compared to the lower

accuracy schemes. To better explore the differences

between these approaches, we also carried out a trade-

off analysis of our schemes to illustrate how

application-centric requirements influence the

applicability of the eight protocol variants explored in

this article.

References

[1] M. Armbrust et al., “Above the clouds: A berkeley view

of cloud computing,” University of California, Berkeley,

Tech. Rep., Feb. 2009.

[2] S. Das, D. Agrawal, and A. El Abbadi, “Elastras: an

elastic transactional data store in the cloud,” in USENIX

HotCloud, 2009.

[3] D. J. Abadi, “Data management in the cloud: Limitations

and opportunities,” IEEE Data Engineering Bulletin, Mar.

2009.

[4] A. J. Lee and M. Winslett, “Safety and consistency in

policy-based authorization systems,” in ACM CCS, 2006.

[5] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C.

Adams, “X.509 internet public key infrastructure online

certificate status protocol - ocsp,” RFC 2560, Jun. 1999,

http://tools.ietf.org/html/rfc5280.

[6] E. Rissanen, “extensible access control markup language

(xacml) version 3.0,” Jan. 2013, http://docs.oasis-

open.org/xacml/3.0/xacml-3.0- core-spec-os-en.html.

[7] D. Cooper et al., “Internet x.509 public key infrastructure

certificate and certificate revocation list (crl) profile,” RFC

5280, May 2008, http://tools.ietf.org/html/rfc5280.

[8] J. Li, N. Li, and W. H. Winsborough, “Automated trust

negotiation using cryptographic credentials,” in ACM CCS,

Nov. 2005.

[9] L. Bauer et al., “Distributed proving in access-control

systems,” in Proc. of the IEEE Symposium on Security and

Privacy, May 2005.

[10] J. Li and N. Li, “OACerts: Oblivious attribute based

certificates,” IEEE TDSC, Oct. 2006.

[11] J. Camenisch and A. Lysyanskaya, “An efficient system

for nontransferable anonymous credentials with optional

anonymity revocation,” in EUROCRYPT, 2001.

[12] P. K. Chrysanthis, G. Samaras, and Y. J. Al-Houmaily,

“Recovery and performance of atomic commit processing in

distributed database systems,” in Recovery Mechanisms in

Database Systems. PHPTR, 1998.

[13] M. K. Iskander, D. W. Wilkinson, A. J. Lee, and P.

K.Chrysanthis, “Enforcing policy and data consistency of

cloud transactions,” in IEEE ICDCS-SPCC, 2011.

