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Abstract 

In distributed transactional database systems deployed over 

cloud servers, entities cooperate to form proofs of 

authorizations that are justified by collections of certified 

credentials. These proofs and credentials may be evaluated 

and collected over extended time periods under the risk of 

having the underlying authorization policies or the user 

credentials being in inconsistent states. It therefore becomes 

possible for policy-based authorization systems to make 

unsafe decisions that might threaten sensitive resources. In 

this paper, we highlight the criticality of the problem. We then 

define the notion of trusted transactions when dealing with 

proofs of authorizations. Accordingly, we propose several 

increasingly-stringent levels of policy consistency constraints, 

and present different enforcement approaches to guarantee the 

trustworthiness of transactions executing on cloud servers. 

We propose a Two-Phase Validation Commit protocol as a 

solution, which is a modified version of the basic Two-Phase 

Commit protocols. We finally analyze the different presented 

approaches using both analytical evaluation of the overheads 

and simulations to guide the decision makers to which 

approach to use. 

Index Terms—Cloud databases, authorization policies, 

consistency, distributed transactions, atomic commit protocol 

  

1. Introduction 

 
Research in cloud computing is receiving distributed 

process of transacting database systems deployed over 

cloud servers, entities work to form proofs of 

authorizations that are justified by collections of 

certified evidence of authority. These proofs and status 

may be evaluated and collected over extended time 

periods under the risk of having the underlying 

authorization policies or the user confidence being in 

lacking agreement states. In this paper, we highlight the 

criticality of the problem. We then define the general 

understanding of trusted transactions when dealing with 

proofs of authorizations.  In cloud computing, users can 

outsource their computation and storage to servers (also 

called clouds) using Internet. Clouds can provide 

several types of services like applications (e.g.,  

 

Google Apps, Microsoft online,). Much of the data 

stored in clouds is highly sensitive, Security and 

privacy are thus very important issues in cloud 

computing.  

 

In one hand, the user should authenticate itself before 

initiating any transaction, and on the other hand, it must 

be ensured that the cloud does not tamper with the data 

that is outsourced. User privacy is also required so that 

the cloud or other users do not know the identity of the 

user. The cloud can hold the user accountable for the 

data it outsources, and likewise, the cloud is itself 

accountable for the services it provides. Existing work 

on access control in cloud are authorization in nature. 

we must also handle two types of security remark 

conditions. First, the system may suffer from policy 

inconsistencies during policy updates due to the 

informal agreement model fundamental most cloud 

services. For example, it is possible for several versions 

of the policy to be observed at multiple position within 

a single transaction, leading to inconsistent (and likely 

unsafe)access decisions during the transaction. Second, 

it is possible for external factors to cause user credential  

inconsistencies (evidence of authority) over the lifetime 

of a transaction. For instance, a user’s login evidence of 

authority could be invalidated or to bring after 

collection by the authorization server, but before the act 

of completing of the transaction.  

 

We propose several increasingly strict levels of policy 

agreement restriction, and present different the act  

approaches  to guarantee the confidence of transactions 

executing on cloud servers.  In the proposed scheme, 

the cloud verifies the authenticity of the server without 

knowing the user’s identity. We propose a Two-Phase 

Validation Commit protocol as a solution, which is a 

modified version of the basic Two-Phase Commit 

protocols. We finally analyze the different presented 

approaches using both analytical Evaluation of the 
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overheads and  enactment to guide the decision makers 

to which approach to use. We then present a more 

general term, unauthorization person not able to access 

policy and credential consistency, our scheme is a safe 

transaction, that identifies transactions that are both 

trusted and conform to the ACID properties of 

distributed database systems. 

 

I.a User Enrollment 
  

Users have an initial level Registration Process at the 

web end. The users provide their own personal 

information for this process. The server in turn stores 

the information in its database. 

 

I.b Transaction Manager 

 
TM first sends a Prepare to-Validate message to each 

participant server. In response to this message, each 

participant evaluates the proofs for each query of the 

transaction using the latest policies it has available and 

sends a reply back to the TM containing the truth value 

(True/False) of those proofs along with the version 

number and policy identifier for each policy used. Once 

the TM receives the replies from all the participants, it 

moves on to the validation phase. TM sends out a 

Prepare-to-Commit message for a transaction, The yes 

or no reply for the satisfaction of integrity constraints as 

in 2PC, the true or false reply for the satisfaction of the 

proofs of authorizations as in 2PV, and the version 

number of the policies used to build the proofs as in 

2PV. It is similar to that of 2PV with the exception of 

handling the yes or no reply for integrity constraint 

validation and having a decision of commit rather than 

continue. The TM enforces the same behavior as 2PV 

in identifying policies inconsistencies and sending the 

Update messages. 

 

I.c Unauthorized Person 

 
If come unauthorized person change the version and 

policy, the TM needs to check the version number it 

receives from each server with that of the very first 

participating server. If they are different, the transaction 

aborts due to a consistency violation. At commit time, 

all the proofs will have been generated with consistent 

policies and only 2PC is invoked.  TM needs to validate 

the policy versions used against the latest policy version 

known by the master policies server to decide whether 

to abort or not. At commit time, 2PVC is invoked by 

the TM to check the data integrity constraints and 

verify that master policies server has not received any 

newer policy versions.  Continuous proofs invoke 2PV 

at the execution of each query which will update the 

older policies with the new policy and re-evaluate. 

 

2. System Assumptions and Problem 

Definition 

 
A. System Model 

 
We assume a cloud infrastructure consisting of a set of 

S servers, where each server is responsible for hosting a 

subset D of all data items D belonging to a specific 

application domain (D ⊂ D). Users interact with the 

system by submitting queries or update requests 

encapsulated in ACID transactions. 

 

A transaction is submitted to a Transaction Manager 

(TM) that coordinates its execution. Multiple TMs 

could be invoked as the system workload increases for 

load balancing, but each transaction is handled by only 

one TM. We denote each transaction as T = q1, q2, . . . , 

qn, where qi є Q is a single query/update belonging to 

the set of all queries Q. The start time of each 

transaction is denoted by α(T), and the time at which 

the transaction finishes execution and is ready to 

commit is denoted by ω(T). We assume that queries 

belonging to a transaction execute sequentially, and that 

a transaction does not fork sub-transactions. These 

assumptions simplify our presentation, but do not affect 

the correctness or the validity of our consistency 

definitions. Let P denote the set of all authorization 

policies, and let Psi (D) denote the policy that server si 

uses to protect data item D. We represent a policy P as 

a mapping P : S × 2D → 2R ×A×N that associates a 

server and a set of data items with 
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a set of inference rules from the set R, a policy 

administrator from the set A, and a version number. We 

denote by C the set of all credentials, which are issued 

by the Certificate Authorities (CAs) within the system. 

We assume that each CA offers an online method that 

allows any server to check the current status of 

credentials that it has issued. Given a credential ck є C, 

α(ck) and ω(ck) denote issue and expiration times of ck, 

respectively. Given a function m : Q → 2D that 

identifies the data items accessed by a particular query, 

a proof of authorization for query qi evaluated at server 

s j at time tk is a tuple (qi, s j, Ps j (m(qi)), tk,C), where 

C is the set of credentials presented by the querier to 

satisfy Ps j (m(qi)). In this paper, we use the function 

eval : F ×TS →B  to denote whether a proof f є F is 

valid at time t єTS. 

 

B. Problem Definition 

 
Since transactions are executed over time, the state 

information of the credentials and the policies enforced 

by different servers are subject to changes at any time 

instance, therefore it becomes important to introduce 

precise definitions for the different consistency levels 

that could be achieved within a transactions lifetime. 

These consistency models strengthen the trusted 

transaction definition by defining the environment in 

which policy versions are consistent relative to the rest 

of the system. Before we do that, we define a 

transaction’s view in terms of the different proofs of 

authorizations evaluated during the lifetime of a 

particular transaction.  

 

Definition 1: (View) A transaction’s view VT is the set 

of proofs of authorizations observed during the lifetime 

of a transaction [α(T), ω(T)] and defined as VT = { fsi | 

fsi = (qi, si, Psi (m(qi)), ti,C) ∧ qi ∈ T}.  Following 

from Def. 1, a transaction’s view is built incrementally 

as more proofs of authorizations are being evaluated by 

servers during the transaction execution. We now 

present two increasingly more powerful definitions of 

consistencies within transactions. 

 

Definition 2: (View Consistency) A view VT = {(qi, si, 

Psi (m(qi)), ti,C), . . . , (qn, sn, Psn (m(qn)), tn,C)} is 

view consistent, or φ-consistent, if VT satisfies a 

predicate φ-consistent that places constraints on the 

versioning of the policies such that φ-consistent(VT ) 

↔ ∀i, j : ver(Psi ) = ver(Ps j ) for all policies belonging 

to the same administrator A, where function ver is 

defined as ver : P → N.  

With a view consistency model, the policy versions 

should be internally consistent across all servers 

executing the transaction. The view consistency model 

is weak in that the policy version agreed upon by the 

subset of servers within the transaction may not be the 

latest policy version v. It may be the case that a server 

outside of the S servers has a policy that belongs to the 

same administrative domain and with a version v > v. A 

more strict consistency model is the global consistency 

and is defined as follows. 

 

Definition 3: (Global Consistency) A view VT = {(qi, 

si, Psi (m(qi)), ti,C), . . . , (qn, sn, Psn (m(qn)), tn,C)} is 

global consistent, or ψ-consistent, if VT satisfies a 

predicate ψ-consistent that places constraints on the 

versioning of the policies such that ψ-consistent(VT ) 

↔ ∀i : ver(Psi ) = ver(P) for all policies belonging to 

the same administrator A, and function ver follows the 

same aforementioned definition, while ver(P) refers to 

the latest policy version.  

With a global consistency model, policies used to 

evaluate the proofs of authorizations during a 

transaction execution among S servers should match the 

latest policy version among the entire policy set P,for 

all policies enforced by the same administrator A. 

Given the above definitions, we now have a precise 

vocabulary for defining the conditions necessary for a 

transaction to be asserted as “trusted”. 

 

Definition 4: (Trusted Transaction) Given a transaction 

T = {q1, q2, . . . , qn} and its corresponding view VT , 

T is trusted iff ∀fsi ∈VT : eval( fsi , t), at some time 

instance t : α(T) ≤ t ≤ ω(T) ∧ (φ-consistent(VT ) ∨  ψ-

consistent(VT )). 

Finally, we say that a transaction is safe if it is a trusted 

transaction that also satisfies all data integrity 

constraints imposed by the database management 

system. A safe transaction is allowed to commit, while 

an unsafe transaction is forced to rollback. 

 

3. Trusted Transaction Enforcement 

 
A. Deferred Proofs of Authorization 

 
Definition 5:  Deferred proofs present an optimistic 

approach with relatively weak authorization guarantees. 

The proofs of authorizations are evaluated 

simultaneously only at commit time (using either view 

or global consistency from Defs. 2 and 3) to decide 

whether the transaction is trusted. 
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B. Punctual Proofs of Authorization 

 
Definition 6:  Punctual proofs present a more proactive 

approach in which the proofs of authorizations are 

evaluated instantaneously whenever a query is being 

handled by a server. This facilitates early detections of 

unsafe transactions which can save the system from 

going into expensive undo operations. All the proofs of 

authorizations are then re-evaluated at commit time to 

ensure that policies were not updated during the 

transaction in a way that would invalidate a previous 

proof, and that credentials were not invalidated. 

 

C. Incremental Punctual Proofs of Authorization 

 
Before we define the Incremental Punctual proofs of 

authorization approach, we define a view instance, 

which is a view snapshot at a specific time instance. 

 

4. Implementing Safe Transactions 

 
A. Two-Phase Validation Algorithm 

 
A common characteristic of most of our proposed 

approaches to achieve trusted transactions is the need 

for policy consistency validation at the end of a 

transaction. That is, in order for a trusted transaction to 

commit, its TM has to enforce either view or global 

consistency among the servers participating in the 

transaction. Toward this, we propose a new algorithm 

called Two-Phase Validation (2PV). 

 

Algorithm 1: Two-Phase Validation - 2PV(TM) 
1. Send “Prepare-to-Validate” to all participants 

2. Wait for all replies (a True/False, and a set of 

policy versions for each unique policy) 

3. Identify the largest version for all unique 

policies 

4. If all participants utilize the largest version for 

each unique policy 

5. If any responded False 

6. ABORT 

7. Otherwise 

8. CONTINUE 

9. Otherwise, for all participants with old 

versions of policies 

10. Send “Update” with the largest version 

number of each Policy 

11. Goto 2. 

 

2PV operates in two phases: collection and validation. 

During collection, the TM first sends a Prepare to-

Validate message to each participant server. In response 

to this message, each participant (1) evaluates the 

proofs for each query of the transaction using the latest 

policies it has available and (2) sends a reply back to 

the TM containing the truth value (TRUE/FALSE) of 

those proofs along with the version number and policy 

identifier for each policy used. Further, each participant 

keeps track of its reply (i.e., the state of each query) 

which includes the id of the TM (TMid), the id of the 

transaction (Tid) to which the query belongs, and a set 

of policy versions used in the query’s authorization (vi, 

pi). 

Once the TM receives the replies from all the 

participants, it moves on to the validation phase. If all 

polices are consistent, then the protocol honors the truth 

value where any FALSE causes an ABORT decision 

and all TRUE causes a CONTINUE decision. In the 

case of inconsistent policies, the TM identifies the latest 

policy and sends an Update message to each out-of-date 

participant with a policy identifier and returns to the 

collection phase. In this case, the participants (1) update 

their policies, (2) re evaluate the proofs and (3) send a 

new reply to the TM. Algorithm 1 shows the process 

for the TM. 

In the case of view consistency (Def. 2), there will be at 

most two rounds of the collection phase. A participant 

may only be asked to re-evaluate a query using a newer 

policy by an Update message from the TM after one 

collection phase. 

For the global consistency case (Def. 3), the TM 

retrieves the latest policy version from a master policies 

server (Step 2) and use it to compare against the version 

numbers of each participant (Step 3). This master 

version may be retrieved only once or each time Step 3 

is invoked. For the former case, collection may only be 

executed twice as in the case of view consistency. In 

the latter case, if the TM retrieves the latest version 

every round, global consistency may execute the 

collection many times. This is the case if the policy is 

updated during the round. While the number of rounds 

are theoretically infinite, in a practical setting, this 

should occur infrequently. 

 

B. Two-Phase Validate Commit Algorithm 

 
The 2PV protocol enforces trusted transactions, but 

does not enforce not safe transactions because it does 

not validate any integrity constraints. Since the Two-

Phase Commit atomic protocol (2PC) commonly used 

to enforce integrity constraints has similar structure as 
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2PV, we propose integrating these protocols into a 

Two-Phase Validation Commit (2PVC) protocol. 

 

Algorithm 2: Two-Phase Validation Commit -

2PVC (TM) 
1. Send“Prepare-to-Commit” to all participants 

2. Wait for all replies (Yes/No, True/False, and a 

set of policy versions for each unique policy) 

3. If any participant replied No for integrity 

check 

4. ABORT 

5. Identify the largest version for all unique 

policies 

6. If all participants utilize the largest version for 

each unique policy 

7. If any responded False 

8. ABORT 

9. Otherwise 

10. COMMIT 

11. Otherwise, for participants with old policies 

12. Send “Update” with the largest version 

number of each policy 

13. Wait for all replies 

14. Goto 5. 

2PVC can be used to ensure the data and policy 

consistency requirements of safe transactions. 

Specifically, 2PVC will evaluate the policies and 

authorizations within the first, voting phase. That is, 

when the TM sends out a Prepare-to-Commit message 

for a transaction, the participant server has three values 

to report: (1) the YES or NO reply for the satisfaction 

of integrity constraints as in 2PC, (2) the TRUE or 

FALSE reply for the satisfaction of the proofs of 

authorizations as in 2PV, and (3) the version number of 

the policies used to build the proofs (vi, pi) as in 2PV. 

The process given in Algorithm 2 is for the TM under 

view consistency. It is similar to that of 2PV with the 

exception of handling the YES or NO reply for integrity 

constraint validation and having a decision of 

COMMIT rather than CONTINUE. The TM enforces 

the same behavior as 2PV in identifying policies 

inconsistencies and sending the Update messages. The 

same changes to 2PV can be made here to provide 

global consistency by consulting the master policies 

server for the latest policy version (Step 5). 

 

C. Using 2PV & 2PVC in Safe Transactions 

 
2PV and 2PVC can be used to enforce each of the 

consistency levels defined in Sec. 3. Deferred and 

Punctual (Defs. 5 and 6) proofs are roughly the same. 

The only difference is that Punctual will return proof 

evaluations upon executing each query. Yet, this is 

done on a single server, and therefore, does not need 

2PVC or 2PV to distribute the decision. To provide for 

trusted transactions, both require at commit time 

evaluation at all participants using 2PVC. 

        The TM needs to check the version number it 

receives from each server with that of the very first 

participating server. If they are different, the transaction 

aborts due to a consistency violation. At commit time, 

all the proofs will have been generated with consistent 

policies and only 2PC is invoked. In the global 

consistency case, the TM needs to validate the policy 

versions used against the latest policy version known by 

the master policies server to decide whether to abort or 

not. At commit time, 2PVC is invoked by the TM to 

check the data integrity constraints and verify that 

master policies server has not received any newer 

policy versions. 

 

5. Evaluations 

 
Environment and Setup 
 

We used Java to implement each proof approach 

described in Sec. 3 with support for both view and 

global consistency. Although the approaches were 

implemented in their entirety, the underlying database 

and policy enforcement systems were simulated with 

parameters. To understand the performance 

implications of the different approaches, we varied the 

(i) protocol used, (ii) level of consistency desired, (iii) 

frequency of master policy updates, (iv) transaction 

length, and (v) number of servers available. 

 

Our experimentation framework consists of three main 

components:  a randomized transaction generator, a 

master policy server that controls the propagation of 

policy updates, and an array of transaction processing 

servers. Our experiments were run within a research lab 

consisting of 38 Apple Mac Mini computers. These 

machines were running OS X 10.6.8 and had 1.83 GHz 

Intel Core Duo processors coupled with 2GB of RAM. 

All machines were connected to a gigabit ethernet LAN 

with average round trip times of 0.35 ms. All WAN 

experiments were also conducted within this testbed by 

artificially delaying packet transmission by an 

additional 75 ms. 
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6. External Interface Requirements 

 
A. Interfaces User 

 
1. All the contents in the project are implemented JSP 

and Servlets. 

2. Every conceptual part of the projects is reflected 

using Servlets Classes. 

3. System gets the input and delivers through the GUI 

based.  

 

B. Hardware Interfaces 

 

Ethernet 
       

Ethernet on the AS/400 supports TCP/IP, Advanced 

Peer-to-Peer Networking (APPN) and advanced 

program-to-program communications (APPC).    

 

ISDN 
  

You can connect your AS/400 to an Integrated Services 

Digital Network (ISDN) for faster, more accurate data 

transmission. An ISDN is a public or private digital 

communications network that can support data, fax, 

image, and other services over the same physical 

interface. Also, you can use other protocols on ISDN, 

such as IDLC and X.25.  

   

C. Software Interfaces 

 
This software is interacted with the TCP/IP protocol, 

Socket and listening on unused ports. Server Socket and 

listening on unused ports and JDK 1.6 

D. Communications Interfaces       

1. TCP/IP protocol. 

2. LAN Settings.    

 

 

7. Other Nonfunctional Requirements 

 
A. Performance Requirements 

 
The performance of the wireless sensor network, to 

execute this project on LAN or wifi communication 

channel .  So we need to one or more than machine to 

execute the demo. Machine needs the enough hard disk 

space to install the software and run our project.       

                      

                                                                                                                                                             

B. Safety Requirement 

 
1.   The software may be safety-critical. If so, there are 

issues associated with its integrity level. 

2. The software may not be safety-critical although it 

forms part of a safety-critical system. For example, 

software may simply log transactions. 

3. If a system must be of a high integrity level and if the 

software is shown to be of that integrity level, then the 

hardware must be at least of the same integrity level. 

4. There is little point in producing 'perfect' code in 

some language if hardware and system software (in 

widest sense) are not reliable. 

5. If a computer system is to run software of a high 

integrity level then that system should not at the same 

time accommodate software of a lower integrity level. 

6. Systems with different requirements for safety levels 

must be separated. 

7. Otherwise, the highest level of integrity required 

must be applied to all systems in the same environment. 

 

C. Security Requirements 

 
Do not block the some available ports through the 

windows firewall. 

 

D. Software Quality Attributes 

 
1. Functionality are the required functions available, 

including interoperability and security. 

2.Reliability maturity, fault tolerance and 

recoverability. 

3.Usability how easy it is to understand, learn, and 

operate the software system. 

4.Efficiency performance and resource behavior. 

5.Maintainability Maintaining the software. 

6.Portability can the software easily be transferred to 

another environment, including install ability. 

 

8. Conclusions 

 
Despite the popularity of cloud services and their wide 

adoption by enterprises and governments, cloud 

providers still lack services that guarantee both data and 

access control policy consistency across multiple data 

centers. Here we identified several consistency 

problems that can arise during cloud-hosted transaction 

processing using weak consistency models, particularly 

if policy-based authorization systems are used to 

enforce access controls. To this end, we developed a 

variety of light-weight proof enforcement and 
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consistency models i.e., Deferred, Punctual, 

Incremental, and Continuous proofs, with view or 

global consistency that can enforce increasingly strong 

protections with minimal runtime overheads. 

 

We used simulated workloads to experimentally 

evaluate implementations of our proposed consistency 

models relative to three core metrics:transaction 

processing performance, accuracy (i.e., global vs. view 

consistency and recency of policies used), and precision 

(level of agreement among transaction participants). 

We found that high performance comes at a cost: 

Deferred and Punctual proofs had minimal overheads, 

but failed to detect certain types of consistency 

problems. On the other hand, high accuracy models 

(i.e., Incremental and Continuous) required higher code 

complexity to implement correctly, and had only 

moderate performance when compared to the lower 

accuracy schemes. To better explore the differences 

between these approaches, we also carried out a trade-

off analysis of our schemes to illustrate how 

application-centric requirements influence the 

applicability of the eight protocol variants explored in 

this article. 
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